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Abstract—2D face presentation attacks are one of the most
notorious and pervasive face spoofing types, which have caused
pressing security issues to facial authentication systems. While
RGB-based face anti-spoofing (FAS) models have proven to
counter the face spoofing attack effectively, most existing FAS
models suffer from the overfitting problem (i.e., lack generaliza-
tion capability to data collected from an unseen environment).
Recently, many models have been devoted to capturing auxiliary
information (e.g., depth and infrared maps) to achieve a more
robust face liveness detection performance. However, these meth-
ods require expensive sensors and cost extra hardware to capture
the specific modality information, limiting their applications in
practical scenarios. To tackle these problems, we devise a novel
and cost-effective FAS system based on the acoustic modality,
named Echo-FAS, which employs the crafted acoustic signal as
the probe to perform face liveness detection. We first propose
to build a large-scale, high-diversity, and acoustic-based FAS
database, Echo-Spoof. Then, based upon Echo-Spoof, we propose
designing a novel two-branch framework that combines the
global and local frequency clues of input signals to distinguish
inputs, live vs. spoofing faces accurately. The devised Echo-
FAS comprises the following three merits: (1) It only needs
one available speaker and microphone as sensors while not
requiring any expensive hardware; (2) It can successfully capture
the 3D geometrical information of input queries and achieve a
remarkable face anti-spoofing performance; and (3) It can be
handily allied with other RGB-based FAS models to mitigate
the overfitting problem in the RGB modality and make the
FAS model more accurate and robust. Our proposed Echo-FAS
provides new insights regarding the development of FAS systems
for mobile devices.

Index Terms—Face Anti-spoofing, Acoustic signal, Multi-
modality, Mobile applications.

I. INTRODUCTION

SER authentication systems have been widely deployed,
Uranging from phone unlocking to financial payment
systems. Generally speaking, ubiquitous user authentication
methods on smartphones include PINs, fingerprint, iris, and
face authentication. PINs are the most traditional authenti-
cation method, but users can easily forget them, and they
are vulnerable to shoulder-surfing attacks [|1]. Fingerprint
and iris-based authentication methods demand the integration
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of the fingerprint and iris sensor [2], [3|] to authentication
devices, and they may fail to work properly in some common
conditions (e.g., wet finger). Face recognition can provide a
more user-friendly authentication mechanism than the tech-
niques above. The face is the dominant biometric trait of a
person, a unique FacelD, and a vehicle itself of non-verbal
but powerful messages [4]]. Therefore, face authentication
systems are becoming increasingly pervasive due to their
promising recognition performance and user-friendly usage.
As a result, we have seen various critical applications using
face recognition, such as device unlocking, online shopping,
online banking, and account log-in based on smartphones.

Despite the demonstrated success of developed face authen-
tication systems on smartphones, the potential menace of face
presentation attacks has raised pressing concerns. This work
mainly focuses on 2D face presentation attacks (PA) since
2D face PA can be easily launched by the attacker with the
target subject’s high-quality face images. In turn, 3D mask face
PA demands advanced fabrication systems capturing the 3D
geometric and texture information of the target person’s face,
which requires high costs. Thus, 3D PA is not as pervasive
as 2D PA [5]. 2D face presentation attacks, including print
attacks and video-replay attacks, have caused severe security
issues to face authentication systems. In addition, an attacker
without professional skills can easily acquire the target user’s
face data and deploy it to hack the face authentication system,
resulting in critical disconcerting security problems.

Various traditional Face Anti-Spoofing (FAS) technologies
have been proposed to defend against presentation attacks.
Most of them focus on extracting traditional hand-crafted fea-
tures including histograms, gradients and texture, such as [5]-
[10]. Thanks to recent advances in artificial intelligence and
deep learning, many deep learning-based FAS solutions [11]-
[18] have been proposed to learn representative features be-
tween live and spoofing faces directly from available training
data. While some signs of progress have been achieved, most
existing models suffer substantial detection performance drops
when the training and testing data distributions are misaligned
(domain shift problem). Regarding real-world application sce-
narios with various uncontrolled environmental variables (e.g.,
acquisition devices and illumination changes), it is non-trivial
to develop a FAS model with high generalization capability.
Some recently proposed methods [19]-[23|] capture depth,
infra-red, or thermal information of input faces as auxiliary
cues. However, these models might require expensive sensors
in practical scenarios and bring extra hardware costs when de-
ployed. In turn, some recent work [24f|—[26[ have demonstrated
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that applying adversarial attack techniques on fake input faces
can easily fool FAS models, causing severe security concerns.
It is only natural to ask: is there a more cost-effective, secure,
and robust FAS system that can effectively cope with the issues
mentioned above?

Inspired by the recent success of acoustic signals [27[]—[31]]
that can efficiently capture reliable biometric information of
users for various mobile-oriented applications, we devise a
secure and robust acoustic-based FAS system in this work
henceforth referred to as Echo-FAS.

As shown in Fig. 1} unlike RGB-based systems leveraging
front cameras to capture the input vision data, the devised
acoustic-based system uses the available speaker to emit a cus-
tomized crafted acoustic signal and leverages the microphone
to collect the reflected recording that has been modulated by
the input live/spoof face. Furthermore, the proposed method
extracts feature representatives from the captured recording
with rich geometric information to distinguish the input query
between genuine and spoofing faces.

Our Echo-FAS only requires one front speaker and micro-
phone as the data collection sensors, which are ubiquitous
on most smartphones. Echo-FAS is cost-effective and can be
readily deployed on commercial mobile devices in a plug-and-
play fashion. Compared with the RGB data that adversarial
attack techniques can quickly attack [24[]-[26]], the designed
acoustic signal is emitted by the system itself. Therefore, it
is more secure and much more difficult to attack or ma-
nipulate even by expert attackers. Our paper shows that the
acoustic-based FAS system can achieve an accurate and robust
face liveness detection performance as the collected acoustic
recording carries much face geometric information, which is
largely ignored in the RGB-based FAS system. Last but not
least, our experiment further demonstrates that the proposed
Echo-FAS system can be flexibly assembled with the RGB-
based FAS model to mitigate the RGB domain gaps.

We first propose to collect a large-scale acoustic-based
database Echo-Spoof by exploiting different smartphones
based on the consideration of diverse environmental variables,
including device, distance, ambient noise, and pitch, accom-
modating applications for practical scenarios. Specifically, our
Echo-Spoof database includes more than 250,000 acoustic
signal segments collected from 30 volunteers. Echo-Spoof is
the largest acoustic-based FAS database so far, to the best of
our knowledge. We also design a novel framework for the
acoustic-signal-based FAS problem. Extensive experimental
results demonstrate the effectiveness and robustness of the
proposed Echo-FAS system. The main contributions of this
work can be summarized as follows:

e We built a large-scale high-diversity acoustic-based FAS
database (Echo-Spoof) from 30 volunteers. Echo-Spoof
includes more than 250,000 signal segments with four
environmental variables: device, distance, ambient noise,
and pitch.

e We propose a novel two-branch framework, smartly
fusing the global and local frequency clues, to accu-
rately detect face liveness. Extensive ablation experiments
demonstrate the effectiveness of the designed framework.
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Fig. 1. Illustration of (a). the traditional RGB-based FAS system and (b). the
proposed acoustic-based system.

o A benchmark based on the Echo-Spoof database, with ex-
tensive experiments showing that the proposed Echo-FAS
system achieves almost 99% AUC performance. Echo-
FAS consistently achieves the best liveness detection
results under various experimental settings, demonstrating
its high robustness. Finally, Echo-FAS can be flexibly
assembled with RGB-based FAS models to mitigate RGB
domain problems, and the use of acoustic data signifi-
cantly boosts the AUC score from 93.48 to 99.08 in the
multi-modality experiment.

In the remainder of this paper, Section II introduces related
work of face anti-spoofing and biometric applications of
acoustic signals. Section III details the data collection process.
Section IV discusses the philosophy of the designed acoustic
signal. Section V presents our proposed two-branch frame-
work to the problem. Section VI evaluates comprehensive
algorithms on the proposed benchmark database Echo-Spoof
and provides rigorous ablation studies. Section VII evaluates
the effectiveness of Echo-FAS allied with RGB-based FAS
models. Finally, section VIII concludes the paper and presents
possible future work.

II. RELATED WORK
A. Face anti-spoofing methods

Existing face anti-spoofing methods can be generally di-
vided into traditional or handcrafted methods and data-driven
(deep learning-based) methods. Most traditional approaches
capture texture cues to distinguish genuine faces from spoofing
ones. Hand-crafted descriptors such as LBP [6], [7], HOG [8]],
SIFT [5], and SURF [9] are extracted and associated with a
classifier to perform FAS. Thanks to the advances in deep
learning in recent years, many learning-based approaches have
been developed, leading to much more reliable FAS perfor-
mance. Researchers leverage auxiliary supervisions to improve
FAS models and overcome overfitting problems. Jourabloo et
al. [32] extract spoof noise patterns to differentiate live faces
and attacks. Nowara et al. [33]] and Liu et al. [34] explore rPPG



(remote photoplethysmography) information as discriminative
clues, while [18] combines both rPPG and depth maps to
conduct learning-based anti-spoofing.

Although learning-based methods have achieved high detec-
tion rates, performance drops drastically under various cross-
domain scenarios, limiting their applications in real-world
scenarios. Many recently proposed models seek to use aux-
iliary modality information to improve the detection models’
generalization. For example, depth maps [20]|-[23]] and thermal
infrared images [20]], [35]-[37]] have been used in FAS mod-
els and achieved promising liveness detection performance.
However, these models typically demand expensive sensors to
capture the specific modality information. Thus, they cannot
be ubiquitously equipped on commodity smartphones and
other devices. In contrast, the Echo-FAS proposed here only
needs one speaker and microphone on commercial-off-the-
shelf (COTS) smartphones to collect the acoustic modality
data and perform a secure and robust anti-spoofing. In other
words, the proposed method leverages existing hardware on
typical smartphones and can be flexibly allied with RGB-based
models to improve FAS RGB-based detection methods.

B. Biometric applications of acoustic signals

Thanks to the ubiquitous availability of speakers and mi-
crophones on COTS smartphones, acoustic-based sensing has
been recently adopted in mobile applications to capture users’
information for various purposes. The basic idea is employing
the speaker to emit a custom-tailored signal and leveraging the
microphone to collect the modulated signal, and the captured
recording can reflect abundant user’s biometric information
such as gesture [27]], [28]], and face structure [29]-[31].

Biometric applications can be generally categorized into
dynamic and static applications. Most dynamic-related works
investigate phase and frequency shifts to extract modulated
patterns that indicate specific movements. For example, Finger
10 [38]], LLAP [39], Strata [28]], and UltraGesture [27]] achieve
remarkable tracking performance in acoustic-based device-free
gesture tracking on COTS devices. Following similar schemes,
silentKey [40] and Endophasia [41] recognize mouth com-
mands through ultrasound-sensing. LVID [42] and LiPass [43]]
detect unique mouth movement patterns for user authenti-
cation. Chen et al. [44]] and EchoLock [45] measure touch
gesture and hand geometry to perform user authentication.

Unlike dynamic biometric applications based on unique
behavioral biometrics that require user actions, static bio-
metric applications detect the user’s biometric structure in
a more user-friendly way. Face authentication and face
anti-spoofing are two typical static application scenarios.
EchoPrint [29] adopted Frequency Modulated Continuous
Wave (FMCW) [46] and visual facial features for secure
authentication. However, face spoofing detection is largely
ignored in Echoprint, leaving a severe security concern in
smartphone authentication systems. EchoFace [30] extracts the
target signals from two reflected signal segments collected
by the earpiece and bottom microphones to perform spoofing
attack detection. However, its performance deteriorates when
the bottom microphone cannot sense the signal well in many
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Fig. 2. Data collection processes of (a). genuine/live and (b). spoofing faces.
The smartphone emits a custom-tailored inaudible signal via earpiece speaker
to illuminate live/spoofing faces, and the reflected acoustic signal is recorded
by the microphone.

practical scenarios. RFace [31]] uses a radio frequency identi-
fication tag array to perform face authentication and face anti-
spoofing synchronously. Although RFace achieves a desired
authentication success rate and a spoofing attack detection per-
formance, its proposed work frequency (920.625MHz) cannot
be applied on existing smartphones [47] and other commercial
devices due to hardware limitations.

Differently from existing work in the prior art, we propose
Echo-FAS, which designs an acoustic signal as the probe and
can be flexibly deployed on most commodity devices in a
plug-and-play fashion. In addition, Echo-FAS takes advantage
of data-driven methods such as CNN and transformer archi-
tectures for conducting more secure and robust face liveness
detection.

III. DATASET ACQUISITION

We first introduce the motivation of an Echo-Spoof dataset
collection where the database has the following desired prop-
erties:

e Acoustic-based: Unlike most existing FAS databases that
collect face images and videos, the proposed Echo-Spoof
database collects the acoustic signals that contain rich
geometric information of user faces to perform face
liveness detection in a more privacy-preserving way;

o Large-scale: The Echo-Spoof database is collected from
30 volunteers (15 females and 15 males), containing more
than 250,000 acoustic signal segments;

e High-diversity: To accommodate the unlimited variations
of environmental conditions in real-world application sce-
narios, we set various environmental variables in the data
collection process, such as collection distances, devices,
ambient noise levels, and pitches.

We illustrate the Echo-FAS dataset collection process
in Fig. [2] where Fig. 2] (a) and Fig. 2] (b) respectively, illustrate
the live/genuine face and spoofing face data collection pro-
cesses. The earpiece speaker first emits the designed acoustic
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Fig. 3. Tllustration of different collection pitches between the device and
live/spoofing face. (a). -10 degrees; (b). 0 degree; (c). +10 degrees.

signal; then, the emitted signal will be modulated by the
surface of the live/spoof face. The reflected signal carrying rich
geometric information of the live/spoof face will be collected
by the top microphone of the smartphone. We have obtained
the approval of the human ethics application from the Human
and Artefacts Ethics Sub-Committee before data collection.

To handle complex attack environments and generalize to
real-world scenarios, we build a large-scale and high-diversity
acoustic database, Echo-Spoof. We consider the following
application variables during the database collection process:

Device. We conduct data collections on four Android smart-
phone devices: Samsung s9, Samsung s21, Samsung
edge note, and Xiaomi Redmi7. Generally speaking,
different smartphones have different hardware conditions due
to the imperfect manufacturing of sensors, including both
speakers and microphones [48]. These physical differences
will introduce diverse non-uniform noise patterns, and the
signals from different smartphones tend to have different
data distributions. Thus, it is non-trivial to investigate the
robustness of the proposed model on different data collection
devices.

Distance. The distance influences FAS performance as the
signal-to-noise ratio (SNR) of the received acoustic signal
tends to be lower as the distance becomes larger. According
to our investigations, the comfortable distance from the user’s
nose to the phone in people’s daily usage is around 25-45cm.
We set three data collection distances of 25c¢m, 35c¢m, and
45cm during the data collection process.

Ambient Noise. Ambient noise is also a key factor impacting
FAS performance as it degrades the SNR of the received
acoustic signal. Moreover, ambient noise ubiquitously exists in
people’s daily usage, so our dataset should consider this aspect.
We set three ambient noise levels by controlling another
device to play audios (e.g., songs and BBC news) in different
volumes. We install a noise detector APP on the data collection
smartphone to precisely monitor the ambient noise levels. In
this dataset, three noise levels have been set as 40 dB, 60 dB,
and 70 dB, corresponding to quiet, little noisy, and very noisy
environments in real-world scenarios.

Pitch. To accommodate diverse usage scenarios, we further
introduce different pitches in our dataset. Pitches affect the
collected geometric information because relative positions
between face regions and the phone have altered. Relative
pitch angles between the smartphone and human face are set
as -10 degrees, 0 degrees, and +10 degrees, corresponding to
different holding habits of users, as illustrated in Fig. 3]
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Fig. 4. Tllustration of designed signal in (a). frequency and (b) time domain.
The pilot is employed for the synchronization between the speaker and
microphone. Three chirp signals with different frequency sweep ranges repeat
three times, and the overall signal cover the frequency sweep from 12 to 21
kHz. (The frequency spectrogram has been scaled for better visualization.)

IV. ACOUSTIC SIGNAL DESIGN FOR FAS
A. Signal Designing

Previous acoustic signal designs for biometric applica-
tions [29]-[31] suffer various weaknesses such as: requiring
extra sensors, low SNR, and poor user experience. Therefore,
developing a new acoustic signal is necessary to promise a bet-
ter user experience and higher liveness detection performance
with commodity hardware.

We illustrate our designed signal in Fig. ] where the whole
signal duration is around 0.8 seconds. The sample rate of
the designed signal is 44.1 kHz as it is the most commonly
supported for Android phones [47]. The highest frequency
that smartphones can sense is around 22 kHz. Therefore, we
add a 250-sample 11.025 kHz pilot before the signals and
set the interval between the pilot and the first chirp as 8,000
samples (i.e., ~0.18s). The following signals, including nine
chirps with three different frequency sweep ranges, covers the
frequency range from 12 to 21 kHz. The signal chirp at each
group covers the corresponding frequency range in a linearly-
increasing manner and repeats three times in the final emitted
signal. Each chirp consists of 60 samples, and the interval
between two chirps is designed as 3000 samples.

B. Signal analysis

The design of the signal considers some fundamental
properties. First, the signal should carry rich and distinct
geometric information from the target face region for high-
quality anti-spoofing. Second, it should be reasonably robust
to ambient noise and support accurate localization of target
face reflection. Lastly, the emitted signal should produce a
minimum annoyance to the human ear to ensure a good user
experience. To fulfill the properties above, we design the signal
mainly considering the following aspects: signal waveform and
frequency, chirp duration and interval, and annoyance control.
Signal waveform and frequency. Signal waveform drives
signal processing methods and further affects the final face fea-
ture extraction results. Therefore, inspired by EchoPrint [29],
we adopt a continuous waveform with a linearly-increasing



frequency based on Frequency-Modulated Continuous Wave
(FMCW) [46] technique, which is widely used in the radar
prior art for distance measurement.

Since distances between different parts of the face and
the smartphone are different, the received signal from the
face region is a combination of multiple echoes reflected by
different regions of the face (e.g., nose and mouth) with
different time delays and phase variations, which represents
the unique geometry of the face region.

In FMCW, the echo separating resolution depends on the
bandwidth of the chosen signal, which is set as 5 kHz in
our design. For a minimum measurable frequency shift ¢ f,
the corresponding time interval 67 can be represented as Tf,
where k is the slope of the signal chirp. Thus, the resolution
that FMCW can separate mixed echoes can be calculated as
follow:

6T v 343
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where v is the speed of sound in the air.

Signal frequency affects robustness to ambient noise, annoy-
ance control, and feature extraction quality. We carefully chose
our signal frequency range to produce minimum annoyance
to the users, considering the audible frequency range of
humans. In terms of robustness, the signal frequency should
be distinguishable from ambient noise frequency to remove
ambient noise using a high-pass filter. In addition, it is essential
to ensure commercial smartphones can play the signal with
enough energy carried at each frequency for high-quality face
feature extraction.

The audible frequency range of human beings is approx-
imately 20 Hz to 20 kHz, and the upper limit for adults is
15-17 kHz on average [49]]. According to Chen et al., [29],
the ambient noise frequency is usually under 8 kHz. High
frequency is desirable for annoyance control and ambient noise
removal. However, our preliminary experiments have shown
that the emitted signal performs poorly when the frequency
range exceeds 20 kHz due to mobile hardware limitations. To
balance the trade-off between annoyance control and accurate
face anti-spoofing, we set our target frequency range as 12 to
21 kHz and divided it into 12 - 17 kHz, 14 - 19 kHz, and 16
- 21 kHz.

While the previous design on the signal waveform and
frequency focused on improving user experience and feature
extraction quality, it is challenging to locate target face reflec-
tion signals in the captured recording accurately. The reason
is that the delays between the microphone and speaker are not
consistent across smartphones [50].

To address this issue, we adopt an 11.025 kHz continuous
pilot signal at the beginning of signal emission, as Fig. [
shows. Its frequency is distinguishable from both our feature
extraction signal (12-21 kHz) and the environment noise (<8
kHz). By calculating the cross-correlation between the pilot
signal and the captured recording, we can locate the beginning
of signal emission in the final recording and perform further
signal processing steps to extract the target face echoes.
Chirp duration and interval. The chirp duration is the sample
length of the chirp, and the chirp interval is the time between
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the emission of two consecutive chirps. According to the nine-
chirp design of our emitted signal, we will also get nine chirps
in the captured recording. Intuitively, each chirp contains three
components: the direct transmission signal, target face echo,
and background echo. The direct transmission signal repre-
sents the directly transmitted signal from the speaker to the
microphone. The face echo and background echo are signals
reflected by face and far-away objects. According to their
traveling distances, the arrival times of direct transmission,
face echo, and background echo are sorted from early to late.
To facilitate extracting the target face echo from the captured
mixed recording in the signal processing stage, we designed
an appropriate chirp duration and interval to prevent overlap
between these three signal components in the time domain.
The duration of a chirp is crucial for its signal-to-noise ratio
(SNR) [50].

In general, a longer chirp enables more energy to be
collected at different frequencies [50]. However, if the chirp
duration is too long, the directly transmitted signal from the
speaker to the microphone could overlap with echoes from the
nearby face region in the recording. For example, for sensing
a face that is 30 cm away from the phone, the estimated arrival
delay of the first sample point of the chirp is ~1.7 ms at the
speed of sound (~340 m/s), which is around 77 samples in
the recording. Therefore, if the chirp duration is longer than
77 samples, the echoes from the face region will overlap with
the direct transmission of the emitted signal in the recording.
According to our user study, the comfortable distance from
the nose to the smartphone is 25 - 45 cm, which is around
~1.4 - 2.5 ms at the speed of sound. Hence, we set the chirp
duration as 60 samples, corresponding to ~1.4 ms at the 44.1
kHz sample rate.

For chirp interval, a shorter interval can save the sensing
time. However, it might harm the quality of face echoes
because echoes from far-away objects could mix with face
echoes in the final recording. Following the previous example,
when the face is 30 cm away from the phone, if we set the
chirp interval as 100 samples, an echo of a chirp from objects
(60+100+77)/44100x34300/2 ~ 92 cm away from the phone
will overlap with the face echoes of the next chirp. Therefore,
in the final signal, we adopt a 3000-sample interval for sensing
chirps and an 8000-sample interval for the pilot tone to avoid
such echo interference while maintaining reasonable sensing
time. The total sensing time, including the pilot tone, is around
[(250 +8000) +9 x (60 +3000)] /44100 =~ 0.8 seconds, which
is short enough to be deployed in real user scenarios.
Annoyance control. As our chosen frequency range is 12-
21 kHz, parts of which overlap with the audible frequency
range of humans (<15-17 kHz), the final signal might produce
audible annoyances to the users. To provide a better user
experience, we reduced the annoyance to the minimum level.
The audibility of the signal was controlled by both the signal
design and the volume of the device. For Echo-FAS, we
carefully estimated these factors to reduce the annoyance to the
user. We first apply a Hamming window function to the chirps
to increase the peak-to-side ratio [51]], thereby creating less
audible effects in the emitted signal. The hamming window
also increases SNR for the chirps, supporting noise removal



in the signal processing stage.

On the other hand, the volume of emitted signals affects
the detection quality by controlling the overall energy of the
emitted signal. Different mobile phones have different optimal
sensing volumes due to their hardware differences. For Echo-
FAS, we find optimal sensing volumes of our experiment de-
vices through preliminary studies. To evaluate our annoyance
control method, we have collected user feedback during the
experiments; more than 90% of volunteers can hardly sense
the annoyance. Hence, we can conclude that Echo-FAS can be
deployed with a good user experience in real-world scenarios.

C. Signal processing

Echo-FAS uses one microphone (the top one) to collect the
signal for further analysis. As we analyzed in the previous
subsection, each chirp in the received recording should contain
three parts: the direct transmission signal, target face echo, and
background echo.

The main idea of signal processing is to eliminate the inter-
ference of the direct transmission and background reflection
signals and extract the target face region echo.

Fig. [j illustrates our signal processing pipeline: signal

segmentation, direct transmission removal, and target reflec-
tion extraction. Signal segmentation locates the beginning of
the recording and subsequently segment it into nine signal
segments, corresponding to the nine chirps of the emitted
signal in Fig. {i} Direct transmission removal aims at removing
the direct transmission signal for each clip; Finally, the target
reflection extraction process applies the adaptive algorithm to
perform the target face region signal extraction.
Signal segmentation. The final signal combines echoes
and direct transmissions, which makes directly locating face
echoes very challenging. Hence, we segment the recording into
nine clips for coarse localization in the signal segmentation
stage, which will be further processed for accurately locating
face echoes. We first perform a synchronization step to locate
the beginning of signal emission in the recording. The signal
emission and signal collection are performed simultaneously.
However, due to hardware limitations, the microphone and
speaker are not perfectly synchronized in actual scenarios.
Thus, the synchronization step can find the delay between
signal emission and collection in the final recording, which
helps us coarsely estimate the location of the face echoes
following the signal duration design. First, Echo-FAS syn-
chronizes the recording by locating the pilot signal using
cross-correlation. As shown in Fig. [f] (a), the first and most
prominent peak represents the beginning of signal emission.
After synchronization, we apply a low-pass filter on the
residual signal to remove ambient noise under 12 kHz. The
signal then can be split into nine short clips.

Each clip contains direct transmission signals, background
echoes, and target face echoes and only the face echoes contain
the target face information for anti-spoofing. Thus, we need to
further process the coarsely segmented clips to segment face
echoes from the mixed signals.

Direct transmission removal. Since the direct transmission
is the signal that directly transfers from the speaker to the

microphone during signal emission, it should be in the same
shape and length as the emitted chirp. The direct transmission
contains significantly greater energy than face echoes and
background echoes because encountered objects like faces
and walls do not absorb energy during reflection. In addition,
considering the shorter traveling distance, the arrival time of
the direct transmission signal is expected to be earlier than the
target face reflection signal. As shown in Fig. [5] we adopt a
matched filter based on the above analysis, which convolutes
the segmented recording clips with the original chirps to detect
the location d of the direct transmission in each clip. As shown
in Fig. [f] (b), the first and highest peak in the matched filter
result indicates the beginning of the direct transmission signal.
Echo-FAS removes the sample points before and in the direct
transmission signal and keeps the remaining data samples for
target face signal extraction.

Target reflection extraction. After the direct transmission
removal, the remaining clips only contain face echoes and
background echoes from far-away objects. Since face echoes
are closer to the phone than surrounding objects, the face
echoes have the shortest route among all echoes, making
its arrival time the earliest in the recording. Furthermore, as
illustrated in Fig. [6] (b), the face reflection is less sensitive to
the matched filter than the direct transmission but still distin-
guishable from the echoes of the surroundings. Therefore, the
target reflection should have the first and highest peak in the
remaining matched filter results after the direct transmission
removal. However, our experiment found that echoes from far-
away objects could sometimes create noticeable peaks in the
matched filter results, damaging the extraction accuracy. To
address this issue, we design an adaptive algorithm to estimate
the suitable location of the face echo for all nine clips in one
detection. Since the distance from the face to the phone is
fixed during detection, the locations of the face echos in all
nine clips should be close. Therefore, in this algorithm, we
iteratively calculate the nine peak locations of the nine clips
and output the mean peak location with the minimum standard
deviation representing the beginning of the target face echo
location /.

Our adaptive algorithm iteratively processes the nine clips
using the matched filter. The target face echo localization
process is summarized in Algorithm 1. We calculate the
mean of the most prominent peak locations in each clip to
estimate the average face echolocation. In each iteration, each
clip’s 60-sample (same as the chirp duration of the designed
signal) segment will be passed through the matched filter,
and the most prominent peak locations will be recorded.
The algorithm regards the mean of the most prominent peak
locations with the minimum standard deviation as the average
face echolocation. Besides, our algorithm processes the clips
in a near-to-far manner. Considering our detection distance is
25 - 45 cm, we assume the actual distance from the face to
phone is 23 - 50 cm during detection, corresponding to 60 -
130 samples transmission time at the sound of speed and 44.1
kHz sample rate.

After obtaining the average face echo location /, we crop 60
samples of each clip after [ as the extracted target face echoes.
For each input acoustic signal, nine 60-sample segments are
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Fig. 5. Overview of the signal processing pipeline. The collected signal is firstly synchronized to locate the beginning of signal emission in the recording
in the signal segmentation stage. Then it will be segmented into nine clips following the signal duration design. Each clip comprises our target face echo,
direct transmission, and background echoes. In the direct transmission removal stage, we apply a matched filter on each clip to find the location d of direct
transmission and remove it from the clip. Then, in the target reflection extraction stage, the remaining clips are fed into our adaptive algorithm to estimate
the target face echo location [ in the clips. Finally, we crop the nine 60-sample segments according to [ as the extracted target face echo signals.
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Fig. 6. (a). Synchronization result between microphone and speaker. The peak
indicates the pilot position of the received signal. (b). Result of applying match
filter to the synchronized signal. The first and largest peak represents the direct
transmission signal. The second peak segmented by red dotted lines indicates
our target face echo. The background echoes with a higher time delay have
a lower amplitude.

extracted to distinguish the input query between live and spoof
faces.

D. The superiority of our designed signal

It is worth noting that there exist several works which also
utilize acoustic signal for face anti-spoofing [29]-[31]], where
the signal was designed with the following desired properties:
commodity hardware requirement, better user experience, and
higher final liveness detection performance. These factors are
critical to the system’s deployment in real-world applications.
Our signal is more advanced than the signal designs in the
previous related work.

Unlike RFace [31] using 920.625 MHz as the working
frequency, our signal covers a much lower 12-21 kHz range,
which does not require any additional hardware and can
be handily deployed on commodity smartphones and other
devices. Compared with Echoprint [29] that chosen a single
16-22 kHz pulse as an emitted signal, we flexibly divide our

Algorithm 1: Target Face Echo Localization

Input : The signal clips after direct transmission
signal removal R;[n],i € [1,9], where n
represents the sample index

Output: The estimated unified face echo location [

1 Initialize reference standard deviation:
std, «— MAXINT

2 for p € [0,70] do

3 Initialize empty list of peaks index: K;

4 for i € [1,9] do

5 Pass R;[p : p +60] through the matched filter
6 Add the index of first and largest peak k; to K
7 end

8 Compute the average of K: ug «— %Z?Zl K

9 Compute the standard deviation of K:

oK — \/é o1 (K = uk)%;

10 if ox < std, then

11 std, «— ok;

12 | «— ug;

13 end
14 end

acoustic signal into nine chirps. Such design enjoys three
benefits: (a). It keeps more energy at each frequency, leading
to a higher SNR in the final recording; (b). It reduces the
chirp duration, preventing the overlapping between the target
face echo and other signals; (c). The emitted signals with
diverse frequency components can facilitate Echo-FAS to
capture more spatial structural features. Finally, Echoface [30]]
designed the signal with a 3 kHz bandwidth in each chirp,
and its overall duration of the signal is over 1.48 s. However,
Echo-FAS designed the signal with a larger bandwidth of 5



kHz, thus achieving a better echo separating resolution. On the
other hand, the overall duration of our signal is 0.8 s, which
is much shorter than Echoface.

Echo-FAS can promise a better user experience and higher
liveness detection performance with commodity hardware by
employing such acoustic signal design, facilitating its deploy-
ment in practical scenarios. Based on our preliminary study,
we also find that our signal can achieve better FAS perfor-
mance compared with the design above strategies, especially
under complex environment settings.

V. FRAMEWORK DESIGN FOR FAS

This section proposes a novel two-branch Echo-FAS frame-
work, which combines the global and local frequency features
of the input signals, leading to high-accuracy face liveness
detection. As illustrated in Fig.[/] the reflected signal collected
by the device is firstly fed to the signal preprocessing model,
including noise removal and signal extraction, which have
been elaborated in Sec. IV-C). Then, the processed signal will
be split into nine segments, corresponding to three different
frequency sweep ranges. Echo-FAS processes the input signal
in the frequency domain as the received signal recording is
uneven over different frequencies, thus presenting significant
distinguishable clues for classifying the input query between
live and spoof face. This phenomenon is mainly caused by two
factors: (a). the target surface’s absorption of the signal; (b).
the mixed echoes with different phases may be constructive at
some frequencies while destructive at other frequencies.

A two-branch framework is designed to complementarily
combine the Fast Fourier Transform (FFT) global frequency
feature and the Short Time Fourier Transform (STFT) local
frequency feature of the input query. The first branch applies
Fast Fourier Transform (FFT) to the nine signal segments
and converts them to nine corresponding frequency segments.
FFT can reflect the global frequency statistics of each signal
segment. Thus, the first branch employs a transformer architec-
ture to extract the global frequency feature of the nine input
tokens. The cascaded self-attention modules in transformers
can effectively capture long-distance feature dependencies
while tending to ignore local feature details.

In contrast, numerous works have demonstrated that the
convolution operations in CNN are good at extracting local
features but experience difficulty in capturing global represen-
tations. Therefore, we employ a CNN architecture to com-
plementarily mine more local informative clues in the second
branch. We first leverage the Short-Time Fourier Transform
(STFT) to convert the processed signals into corresponding
spectrograms. According to the frequency sweep rationale of
our designed signal, for each chirp signal, the emitted signal’s
frequency linearly increases over time. Herein, we employ
STFT to analyze the frequency content of local windows
of the processed signals. The CNN subsequently processes
the spectrogram, and then the local frequency feature can be
extracted.

Finally, we devise two cross attention modules to model
the correlations of the extracted global and local frequency
features. Moreover, the two attended features will be combined

to determine whether the input query is a live person or a
spoofer. The framework is trained in an end-to-end manner and
supervised by the cross-entropy loss between the prediction
result ¢; and ground truth label c;:

N
1 R R
L= ;(cilogc,+(1—cl)log(l—cl)), )

VI. ACOUSTIC-BASED FAS EXPERIMENTS

A. Implementation Details

The proposed framework is implemented by Pytorch [52].
The model is trained using Adam optimizer [53] with §;=0.9
and ,=0.999. We set the learning rate and weight decay as
le-4 and le-5, respectively. The model is trained on 1 Quadro
RTX 8000 GPU with batch size 1024. We split the training,
validation, and testing sets as 8:1:1. We train our model for
1000 epochs and validate it at the end of every epoch. We pick
the checkpoint with the best AUC score on the validation set
and test it on the testing set.

Following [29], [30]], we directly use the raw signal as the
feature for our proposed method as well as other baseline tech-
niques. In our preliminary study, we also experienced using
some feature extraction techniques (e.g., Mel-frequency cep-
stral coefficients (MFCC) [54] and spectral contrast (CONT)
[55])) but found the performances are not satisfactory compared
with using raw signal data.

B. Evaluation metrics

In this work, we adopt the following evaluation metrics
which have been widely used in previous FAS works:

1) Accuracy (ACC):

TP+TN
ACC = TP FP+TN+FN ©)

2) Area Under Curve (AUC): AUC measures the area under
the Receiver Operating Characteristic (ROC) curve. A higher
AUC score indicates better FAS performance.

3) Equal Error Rate (EER): EER measures the False
Positive Rate (FPR) that equals True Positive Rate (TPR).

4) Attack Presentation Classification Error Rate (ACER):
ACER represents the mean of Attack Presentation Classi-
fication Error Rate (APCER) and Bona Fide Presentation
Classification Error Rate (BPCER), where APCER measures
the ratio that spoof faces are misclassified into live faces. At
the same time, BPCER denotes the ratio that live faces are
misclassified into spoof faces. A lower ACER value indicates
better performance.

APCER + BPCER
ACER = i “)
5) Half Total Error Rate (HTER): HTER denotes the
average of the False Acceptance Rate (FAR) and False Reject

Rate (FRR):
FAR+FRR 1

HTER = =
2 2

( FP FN

+ ) ©
TN+FP TP+FN
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Fig. 7. Overview of the proposed two-branch Echo-FAS pipeline. The input signal is firstly fed forward to the Signal preprocessing module to extract nine
signal segments. In the first branch, we apply Fast Fourier Transform (FFT) to obtain nine frequency signals, which are regarded as nine tokens and will
be sent to the Transformer to obtain the global frequency feature. In the second branch, we further employ Short Time Fourier Transform (STFT) to obtain
the corresponding spectrogram to the processed signal. The CNN is used to extract the local frequency feature of the input signals. The Cross Attention
mechanisms model the correlation of the extracted global frequency feature fi and local frequency feature f,. Subsequently, the attended features will be
finally combined to determine whether the input query is a live person or a spoofer.
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Fig. 8. Detection performance of different (a) Transformer block numbers

and (b) CNN layer numbers.

C. Evaluation algorithms

In this section, we adopt the following algorithms to classify
the input acoustic signal between live and spoofing faces:
Logistic Regression (LR) [56], Linear Discriminant Analysis
(LDA) [57]], Decision Tree (DT) [58]], Naive Bayes (NB) [59]],
K-Nearest Neighbors (KNN) [[60]], Support Vector machine
(SVM) [61], Multilayer Perceptron (MLP); Convolutional
Neural Network (CNN); Transformer (TF), and our proposed
system Echo-FAS.

D. Network Architecture

Echo-FAS devises a two-branch architecture and takes the
spectrogram and fft tokens as inputs. To better understand
the impacts of different CNN and Transformer structures, we
conduct an ablation study of the detection performance versus
the network depth. Following [62]], we depict the curves of
EER values versus different Transformer block numbers and
different CNN layer numbers in Fig. [8] Finally, we select the
10-block Transformer and 5-layer CNN as the backbones of
the two branches. Moreover, we further present the detailed
architecture of the two-branch Echo-FAS system in Fig. [0]a).
The left branch presents the CNN network, while the right
one details the Transformer structure. We also specified the
output feature shapes of each layer. Fig. P[b)-(d) illustrate
the detailed structures of Multi-Head Attention, Feed For-
ward, and Cross Attention. The source code is available at:
https://github.com/ChenqiKONG/EchoFAS.
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Fig. 9. (a). The detailed architecture of the proposed two-branch Echo-FAS
system (Dropout probability: 0.5, BN: batch normalization). The left branch
presents the CNN network, while the right one details the Transformer
structure. We also illustrate the architectures of some transformer modules:
(b). Multi-Head Attention; (c). Feed Forward; and (d). Cross Attention. (Q:
query; K: key; V: value; MatMul: matrix multiplication; Dropout probability:
0.1.)

E. Annoyance user study.

The frequency of our designed signal is 12-21 kHz, which is
slightly audible for users. We perform the annoyance reduction
by adding Hamming window to the designed signal and
setting lower volume for Andriod smartphones, as introduced
in Sec. III-B). Considering that noise annoyance has to be
controlled in users’ daily uses, we carried out an annoyance
user study with 30 volunteers to survey the annoyance level
of four data collection devices. As illustrated in Fig. [I0} we
set three annoyance levels in this user study: no annoyance,
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Fig. 10. Annoyance user study of four data collection devices.

TABLE I

FACE LIVENESS DETECTION RESULTS ACROSS DIFFERENT IDENTITIES.

Methods AUC(%)T ACC(%)T HTER(%)| ACER(%)| EER(%)|
LR 95.20 90.87 8.53 9.14 8.59
LDA 94.82 89.63 9.39 10.38 8.98
DT 81.25 81.25 18.01 18.75 22.10
NB 90.65 84.32 14.16 15.69 13.81
KNN 96.21 91.36 8.26 8.65 7.98
SVM 96.53 90.99 8.73 9.02 8.25
MLP 96.82 92.97 6.82 7.04 7.18
CNN 98.16 94.55 545 6.20 5.15
TF 97.69 93.07 6.93 7.16 6.07
Ours 98.79 95.18 4.83 535 434

minor annoyance, and much annoyance. It is shown that more
than 90% of users can hardly notice the sound, and only
around 2.5% of users feel much annoyance. Therefore, we can
conclude that the devised Echo-FAS system has successfully
addressed the annoyance issues and can be deployed in real-
world applications.

F. Face liveness detection results

1) Face liveness detection results cross identities: Consid-
ering the FAS model in the real-world application scenarios
should be directly deployed to unseen identities, we train the
Echo-FAS model on 25 identities and test it on the five unseen
identities. The face liveness detection results are listed in
Table[l] It can be observed that the proposed Echo-FAS system
achieves outstanding 98.79 AUC and 95.18 ACC detection
scores. On the other hand, other classification algorithms such
as MLP, CNN, and TF can also achieve promising detection
performances, further demonstrating that the acoustic signal
carries large informative clues for identifying the input query
between live and spoofing. Moreover, the Echo-FAS system
outperforms all the classification algorithms listed in Table [}
which shows that the designed Echo-FAS system can conduct
a high-accuracy FAS.

2) Face liveness detection results of different devices: In
this work, we apply four smartphones (Samsung s9, Samsung
s21, Samsung edge note, and Xiaomi Redmi7) to conduct the
data collection process. Generally speaking, different devices
have different imperfect hardware conditions, and speaker and
microphone differences between devices will lead to severe
data distribution gaps. Thus, to perform a more accurate

TABLE II
FACE LIVENESS DETECTION RESULTS ACROSS DIFFERENT AMBIENT

NOISES
Noise | 40dB 60dB [ 70dB
Methods | AUC(%) 1 | HTER(%) | | AUC(%) T [ HTER(%) | | AUC(%) 1 | HTER(%) |
LR 86.89 19.98 89.28 15.98 88.45 17.08
LDA 84.56 24.78 88.05 19.46 87.14 19.48
DT 77.92 21.30 78.46 20.70 76.55 22.70
NB 74.56 31.20 74.88 28.43 74.73 25.44
KNN 95.01 10.03 96.10 8.73 94.90 11.52
SVM 96.12 9.39 95.83 9.30 94.97 12.95
MLP 96.31 9.39 96.20 9.21 95.88 10.05
CNN 98.48 6.04 98.70 6.50 98.13 7.67
TF 98.31 6.23 98.30 6.06 98.12 7.07
Ours 98.93 4.86 98.94 520 98.57 6.49
TABLE III
FACE LIVENESS DETECTION RESULTS ACROSS DIFFERENT DISTANCES
Distance ‘ 25cm 35cm ‘ 45cm
Methods | AUC(%) 1 | HTER(%) | | AUC(%) T [ HTER(%) | | AUC(%) 1 | HTER(%) |
LR 86.81 20.97 87.73 20.34 85.21 22.60
LDA 84.54 23.76 85.23 24.39 8278 24.32
DT 74.04 24.75 74.93 23.64 72.79 26.79
NB 75.19 29.51 76.27 28.66 73.48 29.81
KNN 94.14 11.94 95.29 10.08 93.54 13.08
SVM 94.46 12.32 95.55 10.57 93.78 12.23
MLP 94.13 12.18 96.01 9.82 93.76 12.85
CNN 97.40 7.76 98.17 6.52 97.26 8.69
TF 97.31 8.68 97.94 6.82 97.15 8.32
Ours 98.33 6.70 98.64 5.48 98.16 6.53

and secure attack detection, training the specific model for
each device is necessary. Herein, we show the face liveness
detection results of the specific devices in Fig. [T1] It can be
readily observed that the Echo-FAS can achieve high-accuracy
face liveness detection performances on all four smartphones
and outperforms all the classification algorithms presented in
the baseline.

3) Robustness against ambient noise: Considering that am-
bient noise is inevitable in users’ daily usage, we conduct a
robustness evaluation against ambient noise in this subsection.
To investigate the noise resistance of the Echo-FAS system,
we evaluate our model’s face liveness detection performance
across different background noise levels. In Table [l we list
the face liveness detection results of all detection algorithms in
40 dB, 60 dB, and 70 dB noise environments, corresponding
to quiet, noisy, and very noisy scenarios. It can be observed
that the proposed model again achieves the best detection
performance among all detection methods. Besides, the Echo-
FAS can consistently achieve outstanding AUC and HTER
scores across various ambient noise settings. Finally, it is
worth noting that the Echo-FAS can achieve promising 98.57%
detection even in a very noisy environment (70dB), demon-
strating the high robustness of our system.

4) Detection results under various user habits: Echo-FAS
aims at performing face liveness detection in a more user-
friendly fashion. To cater to various users’ habits, we further
introduce two factors of distance and pitch in the collected
database, corresponding to different phone holding distances
and positions. In this subsection, we evaluate our model across
various distances and pitches and report the detection results
in Table [[TI] and Table [[V] respectively. Unsurprisingly, the
proposed method again outperforms all the listed models and
achieves stable and promising detection performance regard-
less of different distances and pitches, further demonstrating
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Fig. 12. Face samples of four new presentation attack species. (a). Paper cut;
(b). Curved Mask; (c). Half Mask; (d). Cropped Mask. The top and bottom
rows respectively present the collected face pictures under normal and dark
illumination conditions.

TABLE IV
FACE LIVENESS DETECTION RESULTS ACROSS DIFFERENT PITCHES
Pitch ‘ +10 degree ‘ 0 degree ‘ -10 degree
Methods | AUC(%) T | HTER(%) | | AUC(%) 1 | HTER(%) | | AUC(%) 1 | HTER(%) |

LR 87.60 20.24 87.87 19.57 83.28 23.70
LDA 85.89 23.36 84.96 23.72 79.92 27.41
DT 76.60 2321 76.54 22.62 71.85 26.53
NB 80.13 25.07 77.01 28.22 74.17 30.47
KNN 94.95 11.32 95.22 9.93 94.63 11.98
SVM 94.16 12.45 96.13 9.95 94.27 13.11
MLP 94.68 12.06 96.46 9.79 94.76 12.20
CNN 97.32 8.26 98.35 6.52 97.44 9.09
TF 97.00 8.80 97.63 7.17 97.27 9.19
Ours 97.97 6.94 98.40 571 98.17 8.25

the effectiveness and high robustness of the designed Echo-
FAS system.

5) Generalization capability to unseen PA species: To
study the robustness of Echo-FAS against new PA, we fur-
ther collect four unseen PA species under two illumination
conditions, which are illustrated in Fig. |'1:Z|: (a). Paper Cut:
the face and body regions are cropped out to make the attack
looks more realistic; (b). Curved Mask: unlike the 2D media
only has a flat surface, we bend the printed photographs to
fool the Echo-FAS system; (c). Half Mask: we cut half of the
printed photography and carefully aligned the edges, leaving
half of the 3D face region exposed to the Echo-FAS system;
(d). Cropped Mask: we cut the mouth and eye regions to
make this database more challenging. The top and bottom rows
present the attack attempts under normal and dark illumination
conditions.

We train our model on the data of print and replay attacks
and directly test it on the four unseen PA species under dark

TABLE V
PRESENTATION ATTACK DETECTION PERFORMANCES ON FOUR UNSEEN
ATTACK SPECIES UNDER TWO ILLUMINATION CONDITIONS.

‘ Dark ‘ Normal AVG
Test PA | AUC(%) 1 | HTER(%) | | AUC(%) T | HTER(%) | | AUC(%) T | HTER(%) |
Cropped Mask 98.43 4.76 98.68 5.26 98.56 5.01
Curved Mask 98.13 5.86 99.86 3.36 99.00 4.61
Half Mask 96.58 6.26 95.73 7.76 96.16 7.01
Paper Cut 99.11 4.76 94.13 14.46 96.62 9.61
AVG 98.06 5.41 97.10 7.71 97.59 6.56
TABLE VI
COMPARISON WITH PRIOR ARTS.
AUC(%)T ACC(%)? HTER(%)| EER(%)]
Echoface 94.50 90.90 8.90 9.38
Echo-FAS 98.79 95.18 4.83 4.34

and normal illumination conditions. Note that the 25 training
person ids and the 5 testing person ids have no overlap. We
report the PA detection performance in Table [V} It can be
seen that the Echo-FAS again achieves outstanding detection
performances for all four challenging PA species. Besides,
it is unsurprising that the Echo-FAS can work well under
both illumination conditions. Compared with the intra-PA
detection results in Table[l] the average detection performance
on unseen attack types only dropped slightly, from (98.79%
AUC, 4.83% HTER) — (97.59% AUC, 6.56% HTER), further
demonstrating the generalization capability of Echo-FAS from
another point of view.

6) Comparison with prior arts: The proposed Echo-FAS
system differs from prior acoustic-based FAS methods in
the following two aspects: (1) signal configurations and (2)
presentation attack detection algorithms. We have analyzed
the superiority of the proposed signal configuration to Rface,
Echoprint, and Echoface in Sec. IV-D). In this part, we
further compare the performance of Echo-FAS with prior
arts quantitatively. As Rface cannot be built into commodity
smartphones due to the working frequency limit, we conduct
the FAS performance comparison with the most recently
proposed method Echoface. We firstly use four smartphones to
emit the acoustic signal in Echoface to acquire data samples;
then, we reimplement the signal processing and classification
algorithms of Echoface, based on the collected acoustic record-
ings. During the data acquisition process, even though we keep
the person identities, devices, and environmental variables
the same as our data collection settings, it is not an ideally



TABLE VII
FAS RESULTS USING DIFFERENT FREQUENCY GROUPS.

12-17kHz  14-19kHz 16-21kHz AUC(%) T HTER(%) |
v - - 96.16 10.77
- v - 95.55 11.72
. - v 93.28 12.14
v B 98.32 5.65
- v v 96.55 8.78
v - v 98.09 6.52
v v v 98.79 4.83
TABLE VIII
EFFECTIVENESS OF THE DESIGNED TWO-BRANCH ARCHITECTURE.
Methods  AUC(%)] ACC(%)] HTER(%)| ACER(%)] EER(%)]
Local 98.16 94.55 5.45 6.20 5.15
Global 97.69 93.07 6.93 7.16 6.07
Fusion 98.79 95.18 4.83 5.35 4.34

fair comparison since both signal setups and classification
algorithms of Echoface and Echo-FAS (Ours) are distinctive.
From Table it can be observed that Echo-FAS achieves
a better detection performance, mainly benefiting from our
signal design and the proposed two-branch learning scheme.

7) Discussion: We quantitatively evaluate the proposed
Echo-FAS system under various experimental settings in this
subsection. Extensive experimental results demonstrate that
our model can achieve high accuracy and robust face liveness
detection performance in a more user-friendly fashion, indicat-
ing that the Echo-FAS can be handily deployed in real-world
application scenarios.

G. Ablation Study

1) Effectiveness of different frequency groups: In the pro-
posed system, the well-designed signal consists of the follow-
ing three different frequency groups: 12-17kHz, 14-19kHz,
and 16-21kHz. Such signal design philosophy ensures two
compelling properties: high detection accuracy and less an-
noyance. To investigate the contribution of each frequency
group to the final liveness detection performance, we conduct
an ablation experiment under the cross-identity setting in
Table From the results reported in Table we can
conclude that: (a). the emitted low-frequency range signal can
capture more informative clues than the high-frequency signal;
(b). the combination of different frequency groups indeed
improves the liveness detection accuracy.

2) Effectiveness of two-branch architecture: In this work,
we design a novel two-branch Echo-FAS framework to syn-
chronously combine the global and local information in the
frequency domain. To study the effectiveness of each branch,
we report the detection performance of the single local branch,
the single global branch, and the fusion of the two branches
in Table m Compared with the single branch, the detection
accuracy using the two-branch framework improves, demon-
strating that the Echo-FAS system successfully fuses the local
and global frequency features of input acoustic signals. The
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Fig. 13. Illustration of different feature fusion strategies: (a). CAl, (b). CA2,
(c). CA3, (d). CA4, and (e). Ours.

TABLE IX

EFFECTIVENESS OF THE TWO CROSS ATTENTION MODULE.

AUC(%)T ACC(%)] HTER(%)] EER(%)]
BL 98.15 93.48 6.52 5.87
CAl 98.76 94.89 5.1 4.03
CA2  98.44 93.80 6.20 5.66
CA3 98.67 94.55 5.45 4.97
CA4  98.16 93.65 6.36 6.95
Ours _ 98.79 95.18 4.83 434

results also show the effectiveness of the designed two-branch
Echo-FAS architecture.

3) Effectiveness of cross-attention (CA) module: 1t is in-
tuitive that the global frequency feature and local frequency
feature of the identical input signal are highly-related. Thus,
how to model the relationship between them and learn more
refined features is a non-trivial problem. We design two cross-
attention (CA) modules for learning the interaction between
the global and local frequency features in this work.

To better demonstrate the effectiveness of the proposed
cross attention mechanism, we compare our scheme with four
feature fusion strategies, all using one single cross attention
module. We depict our scheme and other four feature fusion
strategies in Fig. (a). CAl: f, attends to fi; (b). CA2:
f1 attends to f>; (c). CA3: f, first attends to fi, then fg
is concatenated with fp; (d). CA4: f; first attends to f>, then
Sfarr2 1s fused with fi; (e). Ours: two attended features f,;;
and f,;,» are concatenated for the final decision-making.

We report the detection results of all cross-attention schemes
in Table [X] BL indicates the baseline method that directly
concatenates f; and f>. It can be observed that the overall
detection performances of CA1-CA4 are superior to BL, and
the proposed scheme using two cross-attention modules leads
to further performance improvement. Thus, it can be concluded
that the usage of a single cross-attention module can indeed
improve the detection performance. And the proposed dual
cross-attention design boosts the feature interactions on each
side, thereby achieving the best detection performance.



real

replay ’ ’ ‘i -

Fig. 14. The collected face samples. The top row presents the live faces,
while the middle and bottom rows show the print and replay attack examples.
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Fig. 15. Overview of the vision-acoustic multi-modality fusion framework.
The input data pair includes one acoustic signal segment and one correspond-
ing face image. We employ the Echo-FAS backbone to extract the acoustic
feature f4 and leverage the widely-used ResNetl8 backbone to extract the
visual feature fy,. The feature fusion module fuses these two features and
sequentially makes the final decision.

4) Discussion: Herein, we conduct extensive ablation stud-
ies to demonstrate the effectiveness of the dedicated learning
scheme, the designed framework architecture, and the pro-
posed signal configuration.

VII. MULTI-MODALITY FAS EXPERIMENTS

A. Multi-modality face liveness detection cross to unseen
device

Under the uncontrollable environment conditions in the real-
world application scenarios, the RGB modality-based FAS
models are prone to suffer significant detection performance
drops due to the domain gaps between the training and
testing data sample distributions. On the other hand, Echo-
FAS can capture the surface geometric information from the
input query. Moreover, such geometric information can reflect
much depth, which can hardly be learned from the RGB
inputs. Thus, it is reasonable to flexibly assemble the proposed
Echo-FAS system with the RGB modality to conduct a more
generalized face liveness detection and improve the robustness
of the RGB-based model.

TABLE X
MULTI-MODALITY FACE LIVENESS DETECTION RESULTS.

‘ Vision Acoustic ‘ Fusion
Test device | AUC(%) T | HTER(%) | | AUC(%) 1 | HTER(%) | | AUC(%) 1 | HTER(%) |

Note 89.50 21.30 68.11 38.83 96.33 14.38
S9 99.91 2.90 95.39 24.48 100.00 0.00
S21 94.53 23.89 82.08 19.79 100.00 0.00
Mi 89.99 24.95 89.98 29.21 99.99 2.99
AVG 93.48 18.26 83.89 28.08 99.08 4.34
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Fig. 16. Frequency response curves of the four smartphones. The amplitude
has been normalized to [0, 1].

1) Face liveness detection results: To verify this point, we
further control the front camera to capture the face picture
of ten volunteers during the data collection process. It is
worth noting that the acoustic signal and face image are
synchronously captured by the microphones and front cameras
of the smartphones, which means that each acoustic signal
segment is paired with one corresponding face image. We
show some face examples in Fig. [[4] The top row presents the
live face images, while the middle and bottom rows show the
print and replay attack examples. It is challenging for naked
eyes to discriminate the live face pictures from the spoofing
ones.

We illustrate the overview of the vision-acoustic multi-
modality fusion framework in Fig. [T3] The input data pair
includes one acoustic signal segment and one corresponding
face image. We employ the Echo-FAS backbone to extract
the acoustic feature f4 and leverage the pervasive ResNetl8
backbone to extract the visual feature fy . The feature fusion
module combines these two features and makes the final
decision sequentially. The ResNetl8 is pretrained on the
ImageNet dataset [63]], and the whole framework is trained
in an end-to-end manner. Four smartphones collect the vision
and acoustic data: Samsung edge note, Samsung s9, Samsung
s21, and Xiaomi Redmi7, which can be regarded as four
domains due to the discrepancy between their sensors. We
train the model on three devices and cross it on the other
one. The face liveness detection results of the visual modality,
auditory modality, and multi-modality are reported in Table [X]
Thanks to the usage of acoustic modality data, the face liveness
detection performance of the multi-modality framework gained
a significant improvement compared with the single RGB
modality. Therefore, it can be concluded that acoustic data
can be regarded as auxiliary information to mitigate the RGB
domain gaps effectively.

2) Analysis and discussions: From Table [X] we observe
that the performance of Echo-FAS somewhat drops when ap-
plied to unseen devices, even though it has demonstrated out-
standing generalization capability across different distances,
noise levels, and user habits. This limitation is mainly caused
by the hardware discrepancies among different smartphones.
That is, the speaker and microphone in each phone have
unique mechanical and electronic features due to the im-
perfect manufacturing process [64]. Prior works [48], [65],
leverage such unique features as fingerprints to identify
different devices. To be more specific, we present the acoustic



TABLE XI
FACE LIVENESS DETECTION RESULTS ON UNSEEN PA SPECIES UNDER THE
NORMAL ILLUMINATION CONDITION.

‘ Vision Acoustic ‘ Fusion

Test PA | AUC(%) 1 | HTER(%) | | AUC(%) 1 | HTER(%) | | AUC(%) T | HTER(%) |

Cropped Mask
Curved Mask
Half Mask
Paper Cut

100.00 5.84 98.68 526 100.00 0.00
100.00 5.64 99.86 3.36 100.00 0.00
96.92 34.10 95.73 7.76 100.00 10.10
99.86 5.64 94.13 14.46 100.00 2.70

AVG 99.20 12.81 97.10 7.71 100.00 3.20

TABLE XII
FACE LIVENESS DETECTION RESULTS ON UNSEEN PA SPECIES UNDER THE
DARK ILLUMINATION CONDITION.

‘ Vision Acoustic ‘ Fusion

Test PA | AUC(%) 1 | HTER(%) | | AUC(%) 1 | HTER(%) | | AUC(%) T | HTER(%) |
Cropped Mask 77.11 29.24 98.43 4.76 100.00 0.10
Curved Mask 77.36 25.94 98.13 5.86 100.00 0.00
Half Mask 75.42 42.02 96.58 6.26 100.00 0.20
Paper Cut 77.03 25.74 99.11 476 100.00 12.30
AVG 76.73 30.74 98.06 541 100.00 315

attenuation formula below:
R(f,%) = Ls(/)Lm (H)Ro(fle” V) + noise  (6)

where Ro(f) and R(f,x) represent the signal power transmit-
ted and received at frequency f. Ls(f) and L, (f) denote
the energy loss caused by the speaker and microphone imper-
fection at f. e~®/)X is the attenuation factor related to the
propagation distance x. noise represents the ambient noise.
Basically, Ls(f)Lp (f) can be regarded as the fingerprint of
the device.

From the analysis above, we believe that the frequency
responses of the built-in microphones and speakers in different
phones should be distinctive. To verify this point, we further
measure the frequency response curves of the four Android
smartphones in Fig. [T€] It can be observed that the frequency
responses of different devices differ dramatically at the work-
ing frequency range (12-21 kHz), thus causing performance
drops when the training and testing acoustic data is from
different phones.

It cannot be denied that cross-device detection is a limitation
of Echo-FAS. However, the customized acoustic signal takes
advantage of capturing 3D geometric information of input
query, thus can be regarded as a complementary modality
to RGB modality and can further enhance the generalization
capability. Moreover, it is feasible to train a specific model
for each phone in practical applications to address this device
gap issue. And it is also interesting to design algorithms to
erase device fingerprints in Eqn. (6) and extract more general
features from the recorded acoustic signals, to further improve
the generalization capability. We prefer to investigate these
tasks in our future works.

TABLE XIII
COMPUTATIONAL COSTS AND MODEL SIZES.
MACs #param.
ResNet18 1.82 G 11.69 M
CDCN++ 50.97 G 226 M
Meta-Pattern 1328 G | 62.13 M
Echo-FAS (Ours) [ 0.069 G 373 M
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Fig. 17. Multi-modality face liveness detection results with SOTA RGB-based
methods under three experimental settings: Setting 1: Cross-device; Setting
2: Cross-PA; Setting 3: Cross-PA & illumination. CDCN++ and MP indicate
two SOTA RGB-based FAS methods.

B. Multi-modality face liveness detection cross to unseen
attack species

As discussed above, the acoustic signal can serve as a com-
plementary modality to mitigate the overfitting problem in the
RGB modality. In this section, we investigate the effectiveness
of Echo-FAS defending unseen PA species in two-modality
fusion experiments. Specifically, we train the models on the
data of print and replay attacks under normal illumination
and test them on four unseen PA types with normal and dark
illuminations. From Table we can observe that the usage
of acoustic data improves the detection performance from
(99.20% AUC, 12.81% HTER) — (100.00% AUC, 3.20%
HTER) under the cross PA setting. Table reports the face
liveness detection results on four unseen PA species under the
dark illumination condition. The RGB-based models suffer
significant performance drops while the acoustic modality
still works well in poor ambient illumination environments.
Finally, the model fusing vision and acoustic modalities takes
advantage of both RGB texture features and acoustic-based
facial geometric features and achieves the best performance,
demonstrating that the acoustic modality plays an auxiliary
role in mitigating the domain gaps in the RGB modality.

C. Multi-modality face liveness detection with SOTA RGB-
based models

To verify the complementary efficiency of Echo-FAS when
allied with SOTA RGB-based models, we present the FAS
performances of two-modality fusion under three experimental
settings: Setting 1: Cross-device, Setting 2: Cross-PA, and
Setting 3: Cross-PA & illumination. We conduct two RGB-
based SOTA methodologies: CDCN++ [67]] and Meta-Pattern
(MP) [68]], on our database. As shown in Fig. the acoustic
modality plays an auxiliary role to the RGB modality, and it
can consistently boost the multi-modality fusion FAS perfor-
mances under all experimental settings. Thus, in real-world
application scenarios, the proposed Echo-FAS system can be
solely deployed or flexibly allied with other SOTA RGB-based
FAS systems.

Besides, resource consumption is a vital factor for model
deployment in practical scenarios, especially for mobile ap-
plications. For this reason, we measure the computational



cost and model size of Echo-FAS and SOTA RGB-based
methods. As shown in Table [XIII} Echo-FAS has only 0.069G
MACs (multiply—accumulate operations) and 3.73M parame-
ters, which is much more lightweight than other RGB-based
FAS models. Therefore, Echo-FAS tends to be a better choice
than RGB-based models under the ultra low-power mode in
users’ daily mobile usage.

D. Discussions

In this section, we explored the effectiveness of Echo-FAS
when allied with RGB-based FAS models. In the two-modality
FAS experiments, Echo-FAS played a complementary role to
RGB data, and it could consistently boost the face liveness
detection performance.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a novel acoustic-based framework
to tackle the face anti-spoofing problem. We first collected
a large-scale, high-diversity, and acoustic-based face anti-
spoofing database, Echo-Spoof. Based upon this database, we
devised a tow-branch Echo-FAS architecture to synchronously
capture global and local frequency clues from input acoustic
signals. Extensive experimental results showed that the de-
signed framework performs face liveness detection under di-
verse experimental settings. Our dataset will be freely available
(under a license agreement) on Zenodo upon acceptance.

The proposed acoustic-based FAS system can be handily
allied with RGB-based FAS systems to conduct a more secure
and robust face anti-spoofing. Acoustic data can effectively re-
flect much depth information about input faces, largely ignored
in the RGB modality. Extensive multi-modality experimental
results demonstrated that using the auditory modality could
effectively mitigate domain gaps in the RGB modality and
improve the final FAS performance.

An ablation study further demonstrated that different fre-
quency groups indeed contributed to the final FAS accuracy.
The two-branch architecture effectively learned global and
local joint representations of input signals, which further im-
proved the final classification. Another ablation study showed
that the scheme of the cross-attention module indeed improves
the framework’s face liveness detection performance.

The proposed Echo-FAS can provide new insights regarding
developing FAS systems for mobile devices, which takes
advantage of built-in sensors in the device and bring to bear
algorithms capable of harnessing all their capabilities toward
more secure and transparent authentication systems.

While our proposed method is effective for the face anti-
spoofing (FAS) task, we limit our scope herein to 2D presen-
tation attacks. Adapting our system to 3D face presentation
attacks is worth investigating in future work. We envision
that the acoustic signal could also capture informative clues
between the 3D masks and live person, as mask materials and
skin reflectance characteristics should be distinctive. In turn,
it is also interesting to further apply domain generalization
algorithms to improve the Echo-FAS system’s generalization
capability.
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